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Abstract: 

Quasi-brittle materials (eg concrete and some ceramics) distinguish themselves by a 
dissipation before to cracking being with no or irrelevant permanent deformations. Atomic 
decohesions are the leading mechanisms to cause a rapid growth of a crack by instability. 
Anyhow, the quasi-brittle materials may possess some reversible slidings of nano- or 
microcracks taken into consideration as initial defects to induce a loss of energy by 
friction. Both mechanisms are unsafe because there is no precursor to wake watchers up. 
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1 Introduction  
Approximately 1920, A.A. Griffith introduced the intention of energy of decohesion 

applied in fracture mechanics by dint of the strain energy release rate variable. In 1939, W. 
Weibull brought in the concept of statistical distribution of initial defects originating a 
probability simulation of failure expressed in terms of stress and of the volume taken in 
account. From that time, many models of quasi-brittle materials are grounded on initial 
microdefects or are damage simulations. To predict the crack initiation in construction 
subject to intense loadings, for last decades, the promising method-continuum damage 
mechanics has been worked out. 

For brittle materials, the characteristic subjects are the general fracture criteria, 
debonding, probabilistic approaches, delamination of composites, and dynamic failures. 

 

2 Practical factors 
The strain of brittle and quasi-brittle materials to failure is small (εR < 2 · 10-2) and 

their toughness is at best on the order of several MPa√m. The design of construction 
prepared of brittle materials is arduous for is no space for plastic shakedown in the instance 
of overloading but reinforcements assist. 

For rough estimations, mesostress criteria may be applied, but for precise estimations 
the statistical distribution of internal defects must be taken into consideration. 
Unfortunately, they cannot be precisely evaluated by nondestructive methods. A possible 
alternative is to deduce a probabilistic information from the scatter of test results by an 
inverse method for high cycle fatigue (F. Hild 1994). To illustrate this point, let us 
determine the probability density of the relative size of defects in a brittle material on 
which many failure tests have been performed. 
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The following simplified assumptions are made: 

• 10 to 20 failure tests are available in simple tension on the same geometry. 

• For each specimen, the area density of the initial defects in the plane normal 
to the stress where the failure will occur is D0. Then the failure stress σR is 
simply given by the effective stress concept. For brittle failures, σR is related 
to an initial damage, 
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where σu is the rupture stress of the material without any defect. On a 
practical level, it is the maximum value of σR measured, assuming that in the 
set of specimens, at least one has no defects (or only some very small ones). 

The damage D0 is now a random variable (as is σR) for which the probability density 
resulting from the tests is P(σR). The probability for σR to have values bounded by σa and σb 
is 
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It is also the probability for the decreasing function D0(σR)=1-σu/σR to have values 
bounded by D0(σb)= D0b and D0(σa)= D0a. Considering the inverse function σR = σu(1- D0), 
we then have  
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or by the change of variable σR= σu(1- D0), we then have 
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which shows that the probability density of initial damage D0 is 
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For example, if σR obeys a Gaussian distribution, 
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where Rσ  is the mean value of the failure stress and Rσ  its standard deviation, the 
probability density of D0 is given by 
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or 
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also a Gaussian distribution for D0. The mean value of D0 is: 
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and its standard deviation is  
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There is a simple manner to get an input for stochastic failure analysis. Instead of 

employing a continuous probability rule (such as a Gaussian law), a discrete numerical 
interpretation is possible, being demonstrated in Fig. 1 where the histogram of initial 
damage is inferred in a simple fashion from a set of stresses to fracture by D0i=1-σRi/σu.  
If imax is the number of tests (for the most part low, here imax = 20), applying pmax ≈ 2+√imax 
(here pmax = 6) as the number of intervals for the histograms is a satisfactory compromise 
between excessively low (shallow distribution) and exceedingly large numbers of values 
(also shallow distribution). 
 

 
Fig. 1   Histogram of initial damage D0 deduced from the histogram of failure stress 

 

3 Homogenized characteristics of quasi-brittle substances 
Collapse of brittle or quasi-brittle constituents is principally determined by initial 

defects, which are random in their size and space classification. Accordingly, the 
exactitude of prediction is frequently inadequate for two reasons: high dispersion of 
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fundamental test issues to recognize the parameters and ignorance of the state of initial 
defects. However, discussions of probabilities give a sense to these unsteadinesses. 

For brittle materials or interfaces: 

• In absence of any information other than an ultimate stress, use the damage 
equivalent stress criterion (and not the von Mises stress), 
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Introducing the microdefects closure is an improvement if some compression 
occurs. 

• The Mazars damage equivalent strain is better for concrete: 
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• For interfaces a debonding criterion which needs two material parameters 
may be applied: 
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• The Weibull model should be used to characterize the probability of failure 
but the material parameters need 10 to 20 specimens for their identification: 
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Using the two-scale damage model is a way to predict the rupture of quasi-brittle 
materials that occurs when a dissipation prior to cracking exists (if some fatigue results 
complete the identification database) but several other damage models have their specific 
applications: 

• The Mario model with or without microdefects closure effects is a general 
model valid for most materials while the anisotropic damage model is 
suitable for concrete 

• The Laborderie model with permanent strains and microdefects closure 
effects in dynamics (seismic effects on civil engineering structures) 

• Mesomodels for composites where three damage variables are considered 

• Probabilistic models for ceramics and fragmentation in dynamics 
Finally, elasticity and damage models for reinforced concrete are of main importance 

in civil engineering. Due to the size of the structures, it is interesting in FE computations to 
avoid meshing the steel bars and the concrete body separately. Homogenization procedures 
give the equivalent elastic properties of heterogeneous materials. They apply to undamaged 
reinforced concrete and uniaxial bar reinforcement, yielding orthotropic elasticity 
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characteristics. For example, if the steel spacing is the same in the two transverse 
directions, transverse isotropy is obtained with longitudinal and transverse Young’s moduli 
EL and ET, Poisson ratios vLT and vT shear moduli GLT and GTT: 
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whose specific expressions depend on the homogenization procedure. They are functions 
of steel volume fraction (φ ), the elastic properties of concrete (Ec, νc) and steel (Es, νs). 

The question of coupling with damage arises then and one needs to take into account 
the microcrack closure effect in concrete. One of the simplest possible models uses the 
anisotropic and damage framework, but extended to transverse anisotropy, 
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where the coupling with damage is reduced to the minimum by making the damage 
variable DL act on the longitudinal modulus, the damage variable DT on the transverse 
modulus, and by neglecting the coupling of the ratios νij/Ej and the shear moduli with 
damage: 
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where h is the microdefects closure parameter. 

The damage evolution laws are written as D = D(Y) laws 
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with YL max and YT max as the maximum values reached during the loading of the 
longitudinal and transverse strain energy release rates 
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Applying the simple mixture laws 
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yields 
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that take into consideration for concrete, (by means of h), the much lower growth in 
compression than in tension. 

 

4 Conclusion 
The basic aspects of continuum damage mechanics given are concentrated on the 

application of damage models destined for quasi-brittle materials, namely, in particular, on 
the numerical analysis of fracture: (i) anisotropic damage model for concrete, (ii) failure of 
pre-stressed concrete structures, (iii) seismic response of reinforced concrete construction, 
and (iv) failure of ceramic matrix composites (damage and delamination). 
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