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Abstract 

A simple analytical method intended as an effective design tool for identification of 
material parameters of fibre reinforced concrete is presented. The method is based on 
simplified distribution of normal stresses over the cross section depth and allows the 
determination of material parameters from simple calculations.   
Keywords:  Inverse analysis, analytical formulas  
 
 

1 Introduction  
To reach a reliable and economic design of fibre reinforced concrete 

structures and structural members, their structural analyses, commonly 
performed by the finite element method via available computer programs, must be based 
on adequate material models.  

It is evident that the material relations cannot be obtained directly by laboratory tests 
on axially loaded specimens. One of the typical laboratory tests for fibre reinforced 
concrete to obtain the basic material characteristics is the test of a beam loaded by two 
vertical forces. The standard set-up of this test is a simple supported beam loaded by two 
transverse forces F in thirds of the span. The bending moment is constant in the central 
third of the beam, shear forces appear only in the outer thirds. 

Results of this laboratory test provides only a relation between deflection z and 
loading F(z). However, for application in analyses of real structures, we need the 
constitutive relations describing the material properties. 
 

2 Inverse analysis  
2.1 Bending moment – curvature diagram 

The first step of the inverse analysis involves derivation of the relation between 
curvature of deflection line of the central part of the beam and corresponding bending 
moment (diagram relating the bending moment M to curvature k) from the relation 
between the deflection and the load obtained by a laboratory test.  

As mentioned above, the bending test provides only the relation between the 
deflection z and the load F(z). 
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The midspan deflection of a beam (with the rectangular cross-section of the width b 
and height h), increasing during the load test, is possible [1] to express in terms of 
increasing curvature of the deflection line k and the acting loads F (taking account also the 
effect of shear forces in the outer regions) as   
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where I is the second moment of area of the beam cross section, a represents one 
third of the span length l, the initial modulus of elasticity E can be determined by the initial 
bending response of the beam.   

In such a way, the real performance of the central third of the test beam with 
randomly located cracks, is - as an extreme simplification – modelled by a flexural finite 
element with smeared cracks. With this concept the local discontinuities are distributed 
over some area. Hence, the constitutive behaviour of cracked fibre reinforced concrete may 
be modelled in terms of stress-strain relations. 

This approximation may also be justified by the fact that the crack location - even in 
theoretically identical beams of one series - does not exhibit in the reality the same pattern 
in the all beams. Also, the size of the central third of test beams corresponds to sizes of 
finite elements commonly used in analyses of real fibre reinforced concrete structures. 

For the square cross-section with side s, Eq. (1) takes the form  
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This formula allows express the curvature of deflection line of the central part of the 
beam as                                    
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where z is the midspan deflection and F(z) is the load. 
The corresponding bending moment in the central part of the beam is 
                 M(z) = F(z) a                                                                                            (4) 

The demanded bending moment - curvature diagram can be derived combining Eqs. 
(3) and (4).  

 
2.2 Stress – strain diagram 

The second step of the inverse analysis is directed to construction of the stress-strain 
diagram of the material that would fit the flexural behaviour described by the obtained 
bending moment-curvature diagram. 

Various approaches based on layered models have been developed for such an 
inverse analysis. As these methods are well documented in the literature no attempt will be 
made to review them in detail here. Results of these numerical procedures are, however, 
available only in form of sets of numbers or graphs which are quite unsuitable for 
parametric studies and particularly for stochastic analyses requiring many repeated 
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calculation runs (e.g. Monte Carlo or LHS methods). Moreover, these numerical 
procedures do not allow obtaining analytical expressions of the results suitable for creating 
engineering judgement of the nature of phenomena.     

 
Fig. 1   Distribution of stress over the beam cross-section 

                               
The presented paper is directed to obtain results as analytical functions or formulas 

intended as an effective design tool, allowing easily varying individual input parameters to 
assess effects of these parameters. This is why we consider the simplified stress 
distribution along the depth of the cross section as shown in Fig. 1 - in the tension part of a 
cross section (where strain εt is exceeded) distribution of stress is of a constant magnitude 
σf.   

The depth of a tension part of the section with a linear distribution of a stress (Fig.1) is  
                           ht  =  εt  / k                                                                                                 (5) 

maximal value of compression stress is 
 σc  = σt x / ht                                                                                              (6) 

where x is the height of the compression part of the section (Fig.1). 
Equilibrium of cross section requires 

σf    =  (σc x  -  σt ht) / 2 hf                                                                         (7) 
By combining Eqs. (6), (7) and (8) we obtain 

σt (x2 k / εt – εt / k) – 2 σf (h – x – εt / k) = 0                                             (8) 
which takes a form of quadratic equation for the variable x 

(σt k / εt) x2 +  2 σf  x +  2 σf εt / k – σt εt / k – 2 σf h  = 0                         (9) 
The discriminant of Eq. (9) is       

D = 4 (σf – σt)2 + 8 
t
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Roots x1 and x2 of Eq. (9) are given by the formula  

x1,2 = 
2A

DB ±−                                                                                      (11) 

where   
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                            A = σt k / εt ,     B = 2 σf                                                                         (12) 

Roots x1 and x2 are real numbers if the discriminant D is greater than zero or equal to 
zero. This condition is satisfied for all combination of realistic input parameters.  

The variable x represents the depth of the compression part of the section (Fig.1), so 
the variable x must be greater than zero. Therefore, the solution obtained by the formula  

 x =  
2A

DB +−                                                                               (13) 

is considered in the next considerations. Eq. (13) can be rearranged to the formu-
la 

                x = 
k

q(k)εt                                                                                      (14) 

in which the parameter q(k) as a function of curvature k is given by 
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Stress σf can be expressed as a fraction of the stress σt    

 σf = ρ σt                                                                                        (16) 

where value of the parameter ρ is from interval < 0 ; 1 >. Formula (15) is then 
simplified to 

        q(k) =  -ρ + ( )
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The resulting bending moment M in the central part of the beam is given by the 
formula 
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In this way, the analytical expression of the diagram relating bending moment M to 
curvature k is obtained; the value of bending moment M is expressed as a function of the 
curvature k and independent parameter ρ. Input parameters b, h, σt, εt are for every beam 
and material unique. 

The presented analytical procedure is intended as an effective design tool. Since the 
diagram relating bending moment M to curvature k is expressed as an analytical formula 
(18), it is very easily possible to perform parametric studies to investigate the effects of 
input parameters and their variations. Simultaneously, we obtain an engineering judgement 
about fibre reinforced concrete structural behaviour.  
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As a simple example of application of the formula (18), results of a parametric study 
for the beam are plotted in Fig. 2. Values of the bending moment M are calculated for 
various values of the parameter ρ representing the effect of fibres in concrete. 

 
Fig. 2   Diagram relating bending moment M to curvature k for various values of parameter 

ρ 

                               
Several curves indicating relations of the bending moment M to the curvature k (for 

different values of parameter ρ) are plotted in Fig. 2. The value of the parameter ρ - 
expressing quantity and characteristics of fibres – very significantly influences the shape of 
the M-k diagram. Varying the ρ value, we are able to reach an optimal composition of the 
fibre reinforced concrete satisfying adequate mechanical as well as economic 
requirements. Value of parameter ρ varies theoretically between 0 (value of the stress σf is 
zero – plain concrete) to 1 (value of the stress σf is equal to value of the stress σt). For the 
studied example (Fig. 2), after we reach value of the parameter ρ = 0.5, the diagram 
relating bending moment M to curvature k is progressive for all values of curvature k.       

The intention of the inverse analysis is to identify stress-strain diagram (as it is 
assumed in  Fig.1) – this means to find the value of parameter ρ to reach the best fit of 
behaviour of the tested fibre reinforced concrete beam via comparing results of tests and 
results of calculations.  

There are two ways to obtain the best fit value of parameter ρ to approximate the 
fibre reinforced concrete behaviour: 

We can compare diagram relating bending moment M to curvature k, derived via 
Eqs. (3) and (4) from a laboratory test, with the diagram calculated by the formula (18) for 
a variety of ρ  parameter values.   
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Fig. 3   Detection of parameter r from a laboratory test 

 

  Evaluation of the best fit ρ parameter value can naturally be performed more 
sophistically, but simultaneously more laboriously. On the horizontal axis (Fig.3) we select 
a finite number of values of curvature k. It is obvious that accuracy of this process depends 
on number of such points. 

The routine least squares method can be applied for determination of the best fit 
ρ parameter value; we seek a minimum of the function 

 P (ρ) = ( )( )
2n
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where  ikM  is bending moment corresponding to the curvature ki based on the 
laboratory test, 

ikM (ρ) is bending moment corresponding to the curvature ki calculated in 
terms of parameter ρ and n is the number of selected points. 

 

3 Conclusions 
A simple analytical method intended as an effective design tool for identification of 

material parameters of fibre reinforced concrete is presented. The method is based on 
simplified distribution of normal stresses over the cross section depth and allows the 
determination of material parameters from simple calculations. The results are available in 
the form of analytical functions or formulas, allowing easily varying individual input 
parameters to assess effects of input parameters, to perform parametric and optimising 
studies and, possibly also stochastic analyses requiring many repeated calculation runs 
(e.g. Monte Carlo or LHS methods). Moreover, analytical expressions of the results allow 
also creating engineering judgement of the nature of phenomena. The intention is to reach 
the optimal composition of a fibre reinforced concrete (particularly the amount and 
characteristics of fibres) adequately fulfilling structural as well as economic requirements. 
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Although the method is suitable also for hand calculations it has been programmed 
for added convenience - the program is freely available at the web site 
http://concrete.fsv.cvut.cz/.  
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