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ABSTRAKT 

Téma predikce mechanických vlastností cementových 
kompozitů se těší značnému zájmu, jelikož by díky ní mohlo 
dojít ke snížení potřeby nákladných a pracných laboratorních 
zkoušek. V tomto článku je použito několik modelů strojového 
učení (Lineární, Hřebenová, Lasso regrese a Metoda pod-
půrných vektorů), které jsou natrénovány a vyhodnoceny na 
veřejně dostupném datasetu, který obsahuje velké množství 
různých receptur a jejich tlakových pevností měřených v 
různých časech od betonáže. Studie ukázala, že Metoda pod-
půrných vektorů dosahuje nejvyšších pevností (průměrná ab-
solutní odchylka byla 3.63 MPa). Natrénované modely pak 
byly aplikovány na další aktuálnější externí data. Bohužel se 
ukázalo, že žádný z modelů nedokáže nová data predikovat s 
dostatečnou přesností. Jedním z možných důvodů je zde 
uvedena i nedostatečná reprezentativnost staršího veřejného 
datasetu pro aktuálně používané směsi. 
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ABSTRACT 

Prediction of mechanical properties of cementitious compo-
sites is a topic of great concern as it could minimize the need 
for costly and laborious laboratory tests. In this paper, several 
machine learning models (Linear, Ridge, Lasso, and Support 
Vector Machine regression) are trained and evaluated on a 
publicly available dataset containing various concrete compo-
sitions and their compressive strength measured at different 
ages from casting. In this study, Support Vector Machine re-
gression showed the highest accuracy when testing on the pub-
lic dataset (mean absolute error 3.63 MPa). The trained models 
were also subsequently applied on additional more current 
data. Unfortunately, none of the models proved to be suitable 
which might be due to the low representativeness of the older 
public dataset for the currently used mixtures. 
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1. INTRODUCTION 

Prediction of mechanical properties of concrete based on its 
composition is a topic of great concern in the field of building 
materials. Estimates are traditionally made based on empirical 

relationships; however, with the increasing variety of concrete 
compositions, the common approach is becoming insufficient 
and has restricted validity. 

Several studies employed regression models to estimate 
chosen characteristics, such as compressive strength (Popovics 
and Ujhelyi 2008), shear strength (Slater, Moni, and Alam 
2012), or tensile strength (Silva, de Brito, and Dhir 2015). 
However, further research concluded that more complex sys-
tems are needed, especially in the case of special mix designs 
such as high-performance concrete (Chou and Tsai 2012). For 
this reason, especially in the last decade, machine learning 
(ML) techniques have been employed for prediction tasks. 

ML modeling starts with the identification of a target var-
iable and explanatory variables for which we expect some de-
pendency. To be able to evaluate the performance of the de-
veloped model, it is common practice to split available data 
into training sample on which model parameters are estimated, 
and a test sample which is left aside during development and 
used to assess how the model behaves when applied to unseen 
data. 

A variety of ML models have been applied for the predic-
tion of concrete properties, mostly its compressive strength. 
Linear and regularized regression (Kang, Yoo, and Gupta 
2021), support vector regression and classification (Kang, 
Yoo, and Gupta 2021; Duan et al. 2020; Nguyen et al. 2021), 
boosting- and tree-based models (Kang, Yoo, and Gupta 2021; 
Kaloop et al. 2020; Duan et al. 2020; Nguyen et al. 2021; 
Vakharia and Gujar 2019). Further, studies using more ad-
vanced models such as artificial neural networks (ANNs) have 
been conducted (Sevim et al. 2021; Vakharia and Gujar 2019; 
Chou et al. 2014). 

In this paper, selected ML models (Linear, Lasso, Ridge, 
and support vector machine regression) are trained and evalu-
ated on a publicly available dataset containing 1030 concrete 
mix designs with/without blast furnace slag, fly ash, and su-
perplasticizer and respective compressive strengths measured 
at various times from casting. Additionally, selected trained 
models are applied on unknown data obtained from more cur-
rent papers, thus not present in the source dataset, in order to 
validate the model on mixtures with more detailed composi-
tion. 

2. DATA 

The experimental dataset was obtained from UCI Machine 
Learning Repository where it was donated by Prof. I.-C. Yeh 
(Yeh 1998) in 2007 for unlimited use. The dataset contains 
records of concrete compositions (with/without blast furnace 
slag, fly-ash, and superplasticizer) and their respective com-
pressive strength values obtained from load tests. According 
to (Yeh 1998), the dataset was prepared using 17 different 



 

sources and evaluated so the mixtures were fairly representa-
tive for all of the major parameters influencing the compres-
sive strength of concrete. Further, some mixtures were omitted 
due to their atypical composition or curing conditions. As dif-
ferent studies have dealt with various specimen types for the 
compressive strength determination, the values were con-
verted into 150 mm cylinders according to the relevant stand-
ards. As I.-C. Yeh points out in (Yeh 1998), in some cases, 
detailed information about individual components was missing 
e.g. the class of fly-ash or the exact chemical composition of 
superplasticizer. More detailed information concerning this 
dataset can be found in the aforementioned journal article. 

2.1. Dataset Overview 

The dataset contains 9 variables and 1030 entries. As the com-
pressive strength value (fc) is the targeted variable for the pre-
diction task, the remaining 8 variables are used as the explan-
atory variables on which the target variable depends. Table 1 
shows the ranges of the data. A similar overview can be found 
in (Yeh 1998), although different values are reported, possibly 
due to subsequent alternations of the dataset. The most fre-
quent age of testing in the dataset is the standard 28th day from 
casting. 

Table 1: Ranges of the variables. 

Variable Unit Min Max Median 
Cement [kg/m3] 102.0 540.0 272.9 
Water [kg/m3] 121.8 247.0 185.0 
Slag [kg/m3] 0.0 359.4 22.0 
Fly-ash [kg/m3] 0.0 200.1 0.0 
Superplast. [kg/m3] 0.0 32.2 6.4 
Coarse agg. [kg/m3] 801.0 1145.0 968.0 
Fine agg. [kg/m3] 594.0 992.6 779.5 
Age [days] 1 365 28 
fc [MPa] 2.3 82.6 34.4 

3. DATASET PREPARATION 

3.1. Splitting of the Data into a Test and Train Dataset  

As already briefly described in Introduction, in order to evalu-
ate the model performance (i.e., estimate its generalization er-
ror using metrics described further), the data need to be split 
into a train and test set. 

In this paper, 20 % of the available data was used as test-
ing data, which is a common practice. Firstly, the dataset was 
split randomly, and the test set representativeness was verified 
as described further. 

Based on the correlation between the target and explana-
tory variables (measured using Pearson's correlation coeffi-
cients which describes linear correlation), the cement dose was 
identified as the main driving factor influencing the targeted 
compressive strength. For this reason, the cement dose values 
were categorized and their relative representation in the test 
and train set was determined. As the ratios differed quite sig-
nificantly, the data were further split by stratified sampling so 
the cement dose categories would be evenly represented in 
both the test and train set. 

3.2. Data Transformation 

In order to possibly improve the performance of the selected 
machine learning models, primary explanatory variables (i.e., 
concrete composition and age) were further transformed.  

Primary analysis revealed that the target variable (com-
pressive strength) expresses the most pronounced linear de-
pendency on the amount of cement. For that reason, a variable 
set as the logarithm of the cement dose was added into the da-
tasets in order to achieve its linearization. 

Further additional variables were created as ratios of indi-
vidual components to the amount of binder (this approach was 
also chosen in (Yeh 1998)). As binder, the sum of cement, fly-
ash, and slag was considered. Table 2 illustrates the, in some 
cases, enhanced correlation coefficients (i.e., linear correla-
tion) when the concrete composition is expressed in ratios. 

Table 2: Comparison of the Pearson's correlation coefficient  

Variable 
Corr. 
coef. 

Variable 
Corr. 
coef. 

fc 1.0 fc 1.0 
Cement 0.5 – – 
Superplasticizer (Sp) 0.36 Sp/b 0.24 
Slag (S) 0.11 S/b 0.01 
Fly-ash (FlA) -0.09 FlA/b -0.16 
Fine Agg. (FA) -0.15 FA/b -0.54 
Coarse Agg. (CA) -0.18 CA/b -0.56 
Water (w) -0.28 w/b -0.63 

If necessary for the particular model application (regularized 
models and support vector machine regression), the datasets 
were transformed to have the same scale and unit variance of 
the resulting distribution. Standardization was performed ac-
cording to Eq. 1: 

𝑧 =  
௫ି ఓ

ఙ
 ,     (1) 

where z is the standardized value, x is the original value, μ is 
the mean value, and σ is the variance. 

3.3. The Train Dataset Exploratory Analysis 

To gain a greater understanding of the data, a brief exploratory 
analysis was performed. Only train data were used so the test 
data remained truly unknown and the unfavorable bias 
avoided. 

As it is apparent from Figures 3,4, and 5, some tendencies 
between the target variable and composition ratios are observ-
able; however, the variability outside the upper and lower 
quartiles is significant in all cases due to a large number of 
additional influencing variables. 

 

Figure 1: Dependence of the compressive strength on wa-
ter/binder ratio. 



 

 

Figure 2: Dependence of the compressive strength on fly-
ash/binder ratio. 

4. MODEL PREPARATION 

4.1. Applied Machine Learning Models 

In this part of the paper, selected predictive models used for 
the task are briefly introduced. 

4.1.1. Linear Regression 
The Linear regression model describes the target value (scalar 
response) as a linear combination of the independent explana-
tory variables (features), as shown in Eq. 2: 

y(θ, 𝑥)  =  𝜃  +  𝜃ଵ𝑥ଵ+. . . 𝜃𝑥 ,     (2) 

where y is the value of the target variable, n is the number of 
features, xi is the ith feature value, and θj is the jth model param-
eter (where θ0 is the bias term). This can be expressed in a vec-
torized form, as shown in Eq. 3: 

𝑦ො = ℎఏ(𝐱)  = 𝜃் . 𝐱,      (3) 

where hθ is the regression function using the model parameters 
θ. In this paper, the model is fitted using the method of least 
squares where the mean squared error cost function is mini-
mized by finding optimal parameter values as a solution to the 
problem shown in Eq. 4: 

minimize 
ଵ


∑ (𝜽. 𝒙 −  𝑦)ଶ

ୀଵ .     (4) 

For this problem, a closed solution exists, and it is given by 
Eq. 5. From the equation, we see that the inverse of the matrix 
needs to be computed. This can be computationally intractable 
for large numbers of predictors. This is not our case; however, 
it can be solved by methods as stochastic gradient descent. 

𝜃  =  (𝑿்𝑿)ିଵ. (𝑿்𝐲),        (5) 

where 𝜃 is the parameter value which minimizes the cost func-
tion, X is the matrix of features, and y is the vector of values of 
the target variable.  

4.1.2. Polynomial Regression 
The primary analysis of the dataset indicated that the depend-
ence of the target variable on the explanatory variables could 
be nonlinear. This relationship can be described by a special 
type of Linear regression – Polynomial regression. Although it 
is still a linear problem, as it is linear in the unknown parame-
ters, the relationship between the target variable and explana-
tory variables is modeled as a pth degree polynomial in the ex-
planatory variables, as shown in Eq. 6 for one explanatory var-
iable: 

 y(𝜃, 𝑥)  =  (𝜃  +  𝜃ଵ𝑥ଵ + 𝜃ଶ𝑥ଶ+. . . 𝜃୬𝑥୬).  (6) 

This more complicated model gives us the ability to alter the 
weight of each explanatory variable depending on the value(s) 
of one or more other independent variables thanks to the inter-
action effect. 

Although the addition of a higher polynomial degree of 
features and their combination can be highly beneficial for 
nonlinear data, we must keep in mind that the transformation 
leads to a severe explosion of the feature numbers, possibly 
making the model too slow.   

4.1.3. Regularized Regression (Ridge and Lasso) 
In this study, regularized linear models (Ridge and Lasso) 
were used alongside with basic Linear regression model. In or-
der to prevent overfitting of the model on training data, so it is 
able to sufficiently generalize on test data, models are regular-
ized by the so-called regularization term which is added to the 
initial cost function. By regularization, we minimize the vari-
ance error without substantially increasing the bias error of the 
selected model. In both cases, the degree of regularization is 
given by a hyperparameter α. As the value of the hyperparam-
eter increases, so does the degree of regularization. If the value 
is set to zero, the cost function equals the initial cost function 
in basic Linear regression. 

In the case of Ridge regression, the regularization term is 
equal to α ∑ 𝜃

ଶ
ୀଵ . In Ridge, all of the parameters are equally 

constrained to take on only small values.  
 In the case of Lasso regression, the regularization term is 

equal to α ∑ |𝜃|
ୀଵ . Unlike Ridge regression, Lasso regression 

tends to completely eliminate the weights (parameters) of the 
least important features (i.e., set them to zero). By setting cer-
tain coefficients to zero, Lasso regression provides feature se-
lection, thus improving the model interpretability. 

Bayesian interpretation of the Lasso tendency to set pa-
rameters to zero was provided by Tibshirani (Tibshirani 1996). 
The study pointed out that in the case of Ridge regression, the 
coefficients have a normal distribution, whereas in Lasso re-
gression they have double-exponential distribution (also 
known as Laplace distribution). As the double-exponential dis-
tribution puts more mass near zero and in the tails, the Lasso 
tends to produce estimates that are either large or zero. 

For regularized models, standardized explanatory varia-
bles were used in all cases to ensure penalization of each 
member to the same extent and independence on units in 
which the variables were given. 

4.1.4. Support Vector Machine Regression 
Support vector machine (SVM) analysis is a Machine Learn-
ing model introduced by Vapnik et al. (Vapnik 1995) which is 
suitable primarily for classification tasks, but also for regres-
sion tasks as it is in our case. 

Firstly, the SVM model will be briefly introduced on a 
classification problem for the sake of clarification. Simply put, 
the SVM analysis aims to determine a line or hyperplane, in 
the case of multidimensional space, that separates defined clas-
ses so new instances are classified (i.e., predicted) based on 
their position in relation to the line/hyperplane. The line/hy-
perplane is also accompanied by decision boundaries, defined 
by the nearest instances (the so-called support vectors), which 
determine the boundaries between positive and negative exam-
ples. The SVM analysis aims to fit the widest street (i.e., the 
area between the decision boundaries) between the classes 
with as few margin violations (i.e., instances on the street) as 
possible.  

The aim of the SVM model in the case of a regression task 
is exactly the opposite. The model tries to fit the instances on 
the street while limiting the number of instances off the street. 
The SVM regression model has two hyperparameters – ε 
which determines the width of the street (i.e., determines the 
tolerable error), and C which determines the degree of regular-
ization (the higher the C value, the less regularization). 

In the case of nonlinear data, the application of the SVM 
model is possible as in the case of Linear regression. There are 
several approaches to Nonlinear SVR regression. Firstly, the 



 

addition of powers of features and their combination is possi-
ble in the same manner as described in the Polynomial regres-
sion. Further, the addition of the so-called Similarity features 
defined by Gaussian Radial Basis Function (RBF) is an option. 

However, both of the mentioned approaches lead to a 
drastic increase in the number of features, slowing down the 
model greatly. The solution to the nonlinearity issue lies in the 
employment of special kernel functions (the so-called kernel 
trick) which replace the need for increasing the number of fea-
tures while ensuring the same result. For example, the addition 
of feature polynomials can be substituted with Polynomial ker-
nel while the Similarity features by RBF kernel. 

4.2. Evaluation of the Model Performance 

In this paper, four metrics were used for evaluation of the 
model accuracy – Mean Squared Error, Root Mean Squared 
Error, Mean Absolute Error, and R-squared. 

Mean Squared Error (MSE) measures the variance of the 
residuals, as shown in Eq. 7: 

𝑀𝑆𝐸 =  
ଵ


∑ (𝑦 − 𝑦పෝ)ଶ,

ୀଵ       (7) 

where m is the number of instances, yi is the ith measured tar-
get value, and 𝑦పෝ  is the ith predicted value. 

Root Mean Squared Error (RMSE) measures the stand-
ard deviation of residuals, as shown in Eq. 8: 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸.         (8) 

Mean Absolute Error (MAE) measures the average of the 
absolute difference between the actual and predicted values in 
the dataset, as shown in Eq. 9: 

𝑀𝐴𝐸 =  
ଵ


∑ |𝑦 − 𝑦పෝ|,

ୀଵ       (9) 

where m is the number of instances, yi is the ith measured target 
value, and 𝑦పෝ  is the ith predicted value. Although RMSE and 
MAE have the same units as the predicted variable, their val-
ues can differ. MAE is a linear score, thus weighting all of the 
individual differences equally. RMSE, on the other hand, gives 
high weights to large errors due to their exponentiation. It im-
plies that the larger their difference, the higher the variability 
of the errors. 

R-squared (R2) represents the proportion of the variance 
in the dependent variable, as shown in Eq. 10:  

𝑅ଶ  =  1 −
∑ (௬ି௬ഢෝ )మ

ೕసభ

∑ (௬ି௬ഢഥ )మ
ೕసభ

,                  (10) 

where m is the number of instances, yi is the ith measured target 
value, 𝑦పෝ  is the ith predicted value, and 𝑦ത is the mean value. The 
R2 takes values less than or equal to 1 where 1 means a perfect 
correlation. It is important to acknowledge that by adding more 
independent explanatory variables, the R2 score tends to rise. 
Thus, it may lead to the introduction of redundant variables in 
the model. 

In all of the cases, models were firstly evaluated using K-
fold cross-validation. Thus, the training set was split into k 
subsets (in our paper k = 5). The models were then trained on 
k-1 subsets and evaluated on the remaining one, the so-called 
validation set. This process was repeated by switching the val-
idation set. In our study, we obtained five R2, MSE, and MAE 
values on the training set. This procedure is generally intended 
to determine the model prediction accuracy while reducing the 
impact of the specific test set selection. The evaluation metrics 
were also determined using the prediction on the test set. 

4.3. Hyperparameters Tuning 

As described in chapter 4.1, regularized regression models and 
SVM regression are defined by certain hyperparameters which 
influence the fitting of the model, thus its achievable predic-
tion accuracy. 

So that it was not necessary to search for optimal hyperpa-
rameter values manually, the so-called Grid Search cross-val-
idation was employed. By its application, the hyperparameter 
values in the specified range and all of their possible combina-
tions are evaluated automatically and, based on the evaluation 
scores (R2), their optimal values are determined. 

5. RESULTS 

5.1. Training and Performance of the Models 

In this part of the paper, the performance of the applied ML 
models is presented. In Table 3, an overview of all of the eval-
uation metrics of the models using various datasets is given. 
Further, based on the obtained information, the most suitable 
model and hyperparameter values are herein determined. 

Table 3: An overview of the trained models and their metrics from cross-validation (CV) and test data prediction. 

Model Nonlin. Hyperparam. 
CV Mean(R2) 

R2 MSE RMSE MAE 
Best CV R2 

[-] [-] [MPa] [MPa] [MPa] 
Linear – – 0.62 0.40 114.79 10.71 8,49 
Poly. 2nd order – 0.75 0.79 57.66 7.59 5.59 
Ridge 2nd order α = 0.24e-2 0.79 0.81 50.52 7.11 5.35 
Lasso – α = 0.24e-1 0.62 0.40 114.30 10.69 8.46 
SVM rbf kernel C = 1000; ε = 3 0.87 0.89 27.96 5.29 3.63 

As expected, based on the clearly non-linear relationships 
between features and the target variable, basic Linear regres-
sion did perform rather poorly. The low R2 values and high 
mean errors (MAE 8.49 MPa) on the test data suggest that the 
Linear regression model is underfitting as it is not complex 
enough to describe the dependencies between the data suffi-
ciently. A comparison of the predicted and measured compres-
sive strength values can be seen in Figure 3. 



 

 

Figure 3: Measured/predicted compressive strength values by 
Linear regression on the train set (left) and test set (right). 

The addition of squares of the explanatory variables and 
their combination in the case of Polynomial linear regression 
improved the model performance radically (MAE 5.59 MPa 
on the test set), as illustrated in Figure 4. 

 

Figure 4: Measured and predicted compressive strength val-
ues by Polynomial Linear regression on the train set (left) 

and test set (right). 

The Ridge regression model showed higher accuracy 
when the explanatory features were polynomially transformed 
in an identical way as in the case of Polynomial regression. As 
it is apparent from Table 3, the optimal value of alpha (a hy-
perparameter determining the regularization degree) was de-
termined by the searching algorithm to be rather low. Thus, 
only a small difference can be expected compared to the un-
regularized Polynomial regression. The results proved this as-
sumption, as can be seen in Figure 5 and Table 3. 

 

Figure 5: Measured/predicted compressive strength values by 
Ridge regression on the train set (left) and test set (right). 

In the case of Lasso regression, the polynomial transfor-
mation of features led to a drastic drop in the model accuracy. 
When considering the 1st order features, the model perfor-
mance varied from the basic Linear regression only negligibly 
as the optimal values alpha were determined to be close to 

zero. Thus, the parameters estimated by the Lasso model were 
not far from the ones estimated by the basic Linear regression 
model. Based on these findings the Lasso regression model 
proved to be unsatisfactory as the regularization did not seem 
to improve the performance of the Linear regression model 
(Figure 6). 

 

Figure 6: Measured/predicted compressive strength values by 
Lasso regression on the train set (left) and test set (right). 

In our paper, the SVM regression had the best prediction 
accuracy from the applied models (MAE 3.63 MPa), see Fig-
ure 7. Grid Search cross-validation determined the optimal val-
ues of the hyperparameters C, ε, and the suitable kernel func-
tion. RBF kernel function was determined to be the most ap-
propriate. Thus, the non-linearity of the data was handled by 
the addition of the Similarity features defined by Gaussian Ra-
dial Basis Function (as described in chapter 4.1). 

 
Figure 7: Measured/predicted compressive strength values by 

SVM regression on the train set (left) and test set (right). 

5.2. Prediction on Unknown External Data 

In this part of the paper, the trained models were confronted 
with external data obtained from current journal papers. The 
comparison of the predicted compressive strengths by the 
models trained in this study and the real measured values 
should determine the representativeness of the dataset of cur-
rently used concrete mix designs. 

As the external data, mix designs from (Fantu et al. 2021) 
and selected mix designs (REF, POP10, POP20, and POP30) 
from (Bily et al. 2020) were used. The values of compressive 
strengths were converted from cubic to cylindrical to match 
the original training dataset. Further, the Linear regression, 
Polynomial regression, and SVM regression models were ap-
plied to predict the compressive strength values. 

Unfortunately, despite the overall satisfactory accuracy of 
the models on the original dataset, the models performed 
poorly on the external data, as can be seen in Table 4. The less 
complex Linear regression model consistently underestimated 
the results; however, due to its lower variance, the predictions 
did not reach unrealistic values. Further, although the original 
dataset did not involve such high values of the compressive 



 

strength (the maximum was 82.60 MPa), the Linear regression 
tried to extrapolate from the known values. 

On the contrary, the more flexible models (i.e., Polyno-
mial regression and SVM regression) with more degrees of 
freedom showed clear signs of overfitting of the model on the 
train set as some values were predicted rather accurately while 
others were dramatically far from the measured value (MAE 
36.4 and 36.1 MPa for Polynomial and SVM regression re-
spectively).  

Table 4: Comparison of the measured and predicted compres-
sive strength values using external data. 

Measured Linear. Polynom. SVM 
[MPa] [MPa] [MPa] [MPa] 
108.02 56.66 171.76 13.40 
101.27 60.46 142.76 18.56 
114.76 68.38 15.26 23.18 
119.04 69.94 -18.24 22.62 
61.28 43.96 46.26 50.20 
59.09 47.11 41.51 72.99 
60.11 47.41 42.51 70.70 
60.90 47.62 44.51 66.54 
58.71 47.73 48.26 61.10 
57.67 47.73 51.51 54.88 
57.45 47.60 58.01 48.27 
54.15 47.32 64.51 41.53 

 

6. DISCUSSION AND CONCLUSIONS 

This paper aims to introduce several Machine Learning models 
for the prediction of the compressive strength based on the 
concrete composition. The models were trained and evaluated 
on a publicly available dataset and further applied on new ex-
ternal data. 

Our findings were in line with the previous research 
which considered basic linear regression models to be insuffi-
cient for the complex non-linear relationships between mate-
rial composition and strength (Ben Chaabene, Flah, and Nehdi 
2020). In our study, the application of the most flexible model 
– Support Vector Machine regression, led to the most accurate 
prediction of the target value on the test data (MEA as low as 
3.63 MPa). In practice this could be considered to be a highly 
satisfactory result, as the tolerable deviation when classifying 
mixtures is typically in the order of percentage units. 

Unfortunately, the models did not perform well on the ad-
ditionally acquired more current data as all of the evaluation 
metrics were highly unsatisfactory. However, this finding does 
not automatically mark the model's parameters to be poorly es-
timated. Rather, it indicates that the original data are not rep-
resentative enough for the current mix designs. Furthermore, 
the original publicly available dataset contained only a limited 
amount of information about the compositions and testing pro-
cedures. 

This finding can be highlighted as an important point in 
this study, as it outlines the need for continuous, correct, and 
comprehensive data collection. The application of Machine 
Learning algorithms is a highly promising approach to numer-
ous issues in civil engineering; however, it is not feasible with 
a sufficient data supply. 
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