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ABSTRAKT 

Článek se zajímá o vyčíslení zatížení a následné odezvy 
železobetonových konstrukcí od vnitřních a blízkých explozí 
kondenzovaných výbušnin. Pracuje s metodami z publikací 
NUREG/CR-0442 a UFC 3-340-02, které doplňuje pro 
rozšíření jejich rozsahu použitelnosti. Rozšíření pak umožňují 
posouzení použitelnosti metody pro výpočet blízkého výbuchu 
na blízce ohraničené konstrukce, hodnotí vliv tříštění 
fragmentujících prvků na odraz tlakové vlny od jejich povrchu 
pro vnitřní výbuch a umožňují stanovení impulzu od tlaku 
plynů v místnostech s více otvory. Dále je popsán 
zjednodušený postup vyčíslení odezvy železobetonových 
konstrukcí na zatížení vnitřním výbuchem. Pro řešení byly 
použity jednoduché inženýrské přístupy, metoda Newmark  
G-α a upravená metoda EC-2 pro mezní stavy použitelnosti. 
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ABSTRACT 

This article focuses on quantifying the loads and subsequent 
responses of reinforced concrete structures to confined and 
close-in explosions of condensed charges. It employs methods 
outlined in publications NUREG/CR-0442 and UFC 3-340-02, 
which are extended to broaden their applicability. These 
extensions enable the evaluation of the suitability of the 
method for close-in explosions on closely bounded structures, 
assess the impact of fragmenting of frangible elements on 
pressure wave reflection during internal explosions, and 
determine gas pressure impulses in rooms with multiple 
openings. Additionally, the article describes a simplified 
procedure for quantifying the response of reinforced concrete 
structures to confined explosion loading. To address these 
issues, simple engineering approaches, the Newmark G-α 
method, and a modified EC-2 method for limit state design 
were employed. 
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1. INTRODUCTION 

The conflict that has persisted in Ukraine over the past two 
years and the outbreak of the Israel-Hamas war in October 
2023 serve as a reminder of the critical need for building 
designs that ensure the reliability of structures within the crisis 
infrastructure under extraordinary conditions, such as blast 
loads. Evaluating the structural response of concrete structures 
is crucial not only for building design but also for forensic 
analysis of past events. This is particularly relevant in the 
present day when conflicts are fought not only on the 
battlefield but also in the media. 

The characteristics of loads generated by blast waves on 
structures depend on the chosen level of simplification, which 
is often determined by the explosion environment. This article 
discusses two types of explosions: close-in explosions and 
confined explosions.  In the case of the former, blast waves are 
relatively small or comparable in magnitude to the reflecting 
surface, resulting in an uneven distribution of the load 
generated on the structure in question. For the latter, the 
detonation of condensed explosives occurs within a confined 
space, such as a building or other structure. The pressures 
acting on a given confinement's surface (wall or slab) are 
amplified by reflection from other surfaces.    

2. STRUCTURAL ANALYSIS UNDER 
EXPLOSIVE LOADING 

By the methods outlined in NUREG/CR-0442 and UFC 3-
340-02 a hypothetical case study was examined. In this 
scenario a spherical condensed charge of Octol 70/30 with a 
charge weight WEXP of 6.3 kg was placed in a rectangular room 
with two openings (the larger covered by glass and smaller 
without cover). 

The NUREG/CR-0442 method for evaluating the 
response of reinforced concrete structures to close-in 
explosions was used to assess the damage sustained by the 
back wall segment (marked in blue in fig. 1). However, the 
source does not sufficiently express the plastic hinge radius of 
the damaged structure. The radius can serve as an indicator of 
the method's applicability to structures with supports near the 
explosion's 'epicentre' on the loaded structure. 



 

 

Figure 1: Schematic axonometry of the case study. 

 The evaluation of generated loads on the side wall 
(marked in green in fig. 1) was conducted using the method 
described in UFC 3-340-02 for confined explosions.  
However, the source does not cover the effect of fragmentation 
of frangible elements (e.g. glass covers) in its evaluation of 
blast loads caused by confined explosions. Additionally, 
mentioned publication does not provide a method of assessing 
gas pressure pulses for partially vented confinements with 
multiple openings.   

Independent extensions have been developed to address 
the mentioned limitations (single opening, fragmentation of 
frangible elements etc.) of the methods described in 
NUREG/CR-0442 and UFC 3-340-02. These extensions are 
presented in the following paragraphs.  

2.1. Close-in Explosion – Plastic Hinge Radius 

NUREG/CR-0442 provides graphs with scaled units to 
determine the response of a wall to a close-in explosion. 
However, these graphs assume that the loaded surface is large 
enough and neglect the effect of borders and support on the 
local response. The method is based on the idea that the 
deformation of the surface can be defined by a circular plastic 
hinge and a deformation at the centre of the circle - the 
"epicentre" of the explosion (Kot et al. 1978). If the radius of 
the circular plastic hinge is smaller than the distance from the 
"epicentre" to the nearest boundary or support, it can be 
assumed that reasonable "first section" results can be obtained. 

The presumed plastic hinge radius is the radius that 
corresponds to the maximum deformation value (rotation in 
the plastic hinge θ or the deflection in the centre δ). The 
deformations can be calculated as follows (Kot et al. 1978): 
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where ms represents the mass of the surface within the plastic 
hinge radius xr, Fr represents the resisting forces, and iT is the 
total impulse acting on the surface within the radius calculated 
as: (the notation is explained in fig. 2) 

��,� ≅ ∑ ��,����,�(��,�)"�,$ "%,	&'(⁄�=1 ,   (3) 

where irα,n is the reflected impulse calculated for the radius xa,n 
of the intermediary axis of the annulus. 

 

Figure 2: Total impulse calculation - geometric relations. 

Three methods were considered to obtain this reflected 
impulse. The first method involves using NUREG/CR-0442 
graphs (Kot et al. 1978) for shock wave parameters from free-
air bursts and for reflected pressure coefficients. This method 
requires the calculation of a fictive scaled distance. The second 
method involves using more recent graphs from UFC 3-340-
02 (Anon. 2008) that are similar to the first method. The third 
method involves using UFC 3-340-02 graphs to directly 
evaluate the reflected impulse. The results of different methods 
for the same inputs exhibited significant differences. For close-
in explosions, the first approach is probably most suitable 
because it leads to results that closely align with the results 
presented in NUREG/CR-0442.   

The problem was solved through iterative calculation of 
deformations for multiple guessed values of xr,i. The desired 
radius xr was selected based on the results, as it produced the 
highest deformation. It was then compared to the distance from 
the 'epicentre' to the nearest boundary to assess the suitability 
of the method used. 

2.2. Reflections from Fragile Frangible Elements 

According to UFC 3-340-02, when the frangible element 
breaks during loading, the effect of blast wave reflection from 
the frangible element to the adjacent surface should be reduced 
by creating additional venting area (Anon. 2008). This can be 
solved by reducing the reflection with the average 
fragmentation coefficient kf,m ∈ <0;1> The coefficient kf,m is 
dependent on the time evolution of the additional venting area 

Aav. The examination of this evolution should be limited to the 
section of the frangible element between the wall in question 
and the charge (see fig. 3). This is because the remaining part 
of the frangible element has a negligible reflection towards the 
wall in question (Anon. 2008). Aav can be created by two 
factors: surface deformation and fragment rotation. As the 
glass fragments created by blast loading are expected to be 
small, the contribution of rotation to the creation of Aav is 
neglected. 

 

 

Figure 3: Spatial arrangement schematic 



 

The evaluation method for kf,m assumes, that the primary 
reflections constitute the predominant source of pressure 
amplification on the wall in question. Therefore, the waves that 
reflect from multiple surfaces can be neglected. In addition, 
the frangible element is assumed to have little resistance to 
blast loading and the time to failure (fragmentation) is assumed 
to be zero. 

Before performing the calculations, it is necessary to 
define the simplified shape of the deformed frangible element 
on which the calculation of Aav depends. This shape is assumed 
to emulate the front of the primary shock wave. 

The shape of the primary shock wave was analysed in 
both the horizontal and vertical planes prior to impact with the 
glass cover in the case study setup (see fig. 4 (Li et al. 2022)). 
Based on the examination, a section of a cylindrical surface 
(see fig. 5) is considered to be the most appropriate shape 
simplification. 

This deformed surface can be defined by the deflection u 
of the control point - the perpendicular projection of the point 
of explosion onto the plane of the frangible element – and a 
chord length of the cylinder section. From the geometric 
relations of the problem, Aav can be expressed as a function of 
the deformation at the control point u and time t, as follows: 

��* = ℎ,� [.,�/0(1, �) atan "�'%6(0)  78$9&(:,0)−:  � ��<�=(�)], (4) 

where hfr is the height of the frangible element,  ��<�=(�) = min(�,�(�); �lim) ,   (5) 
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where xlim corresponds to the length of the section, and xu 
represents the distance between the control point and the 
intersection of the blast wave's front and the plane of the 
frangible element (without taking into account its 
deformation). This distance can be obtained from Pythagorean 
theorem of the distance between the explosive and the control 
point, and the radius of the wave front Rwf(t). 

  

 Figure 4: Wave front shape. 

  

Figure 5: Simplified shape of the deformed frangible element. 

The fragmentation coefficient kf for a given time t and 
deflection of the control point u can be calculated with using 
following equation: 

F,(1, �) = max [(1 − K%L(:,0)K80 )2 ; 0],   (7) 

where Af0 is the original (undeformed) area of the frangible 
elements section. Equation 7 is based on the following 
conditions. Firstly, the condition Aav =0 → kf =1 must be 
satisfied. Secondly, if Aav ≥ Af0, then the reflection of the wave 
towards the interior is negligible. This assumption is based on 
the principle of the wave leaking around the fragments. 
However, reflections can be neglected only if the clearing time 
��, which depends on the size of the fragments (Makovička et 
al. 2008), is less than the time taken to reach the deformation 
of the frangible element Aav = Af0. In other words, this method 
is suitable for fragment sizes where Aav(u(tc),tc) ≤ Af0.  
Additionally, it is suggested that the reduction in reflection is 
more pronounced with a difference of smaller values of Aav, 
than with the same difference of larger values of Aav. This 
belief is based on the fact that the pressure gradient in the gaps 
is increased when the fragments are close to each other. 
Therefore, the drop of reflected overpressures (clearing) in 
front of the fragments should be increased. Equation 7 
accounts for this phenomenon by squaring the expression. 
However, to obtain more accurate results, this engineering 
estimate should be refined by experiment or numerical 
simulation. 

The average fragmentation coefficient kf,m can be acquired 
via time-stepping calculation as a weighted average of kf,i-1/2 – 
the approximate average fragmentation coefficient of time step 
i. The weights are the reflected impulses that act on the control 
point during the given time step. In each time step is firstly 
calculated the deflection u from the linear acceleration method 
as (Zhou et al. 2021):  

1� = 1�−1 + 1�̇−1�R0<S + 16 (2 1�̈−1 + 1̈�)�R0<S2,   (8) 

where 1̇ and 1̈ marks first (speed) and second (acceleration) 
derivations of the displacement u respectively. These 
derivations can be calculated as follows: 

1̇� = 1̇�−1 + 12 (1̈�−1 + 1̈�)�R0<S,                  (9) 

1̈(�) = WX((0)YZ,8 ,                                                                                               (10) 

where Pcp(t) are the pressures acting on the fragments at the 
control point considering the effect of secondary waves. These 
pressures should be reduced by kf,i as they are also affected by 
the fragmentation of the frangible element. This leads to an 
iterative calculation of kf,i. First the value of kf,i is estimated as 
kf,i = kf,i-1. Then, the calculation is performed using equations 
8 to 10 resulting in an approximate value of ui. This value is 
then used for a better estimate of kf,i (calculated from the 
equations 4 to 7). This cycle continues until the difference in 
ui between subsequent iterations is less than the user selected 
limit. 

The calculation was performed for the inputs from the 
case study and the results show that the effect of fragmentation 
is in this case neglectable: kf,m ≃ 1. The results of the time 
stepping calculation are shown in following figure. 



 

 

Figure 6: Time evolution of selected quantities. 

2.3. Gas Pressures – Multiple Openings  

The UFC 3-340-02 method for evaluation of gas pressures 
does not specify the approach for scenarios where there are 
multiple openings in the confinement structure. As the 
procedure determines the impulse of gas pressures ig directly 
from its graphs, it is not easy to assess the impact of multiple 
openings (Anon. 2008).  

The method for evaluating ig from the UFC graphs has 
been developed in such a way that none of the following 
statements are violated during the calculation. Firstly, the 
impulse ig of a room with multiple openings must always be 
smaller than the impulse of the same room with a single 
opening. Secondly, the "addition" of the effects of the 
openings is cumulative. And thirdly, the ig calculated for 
several openings with the same characteristics (except for size) 
is equal to the ig obtained for a single opening with an area 
equal to the sum of their areas.   

First of all, the ig must be obtained individually for each 
opening, without taking into account the others. Each variable, 
distinct for every opening, is indexed with the identification 
number i of the respective opening. Subsequently, the 
fictitious scaled vent areas, denoted as Av,i,fic/Vf 

2/3 are read for 
calculated gas impulses ig from a ig/Wg 

1/3 to Av/Vf 
2/3 graph (Wg 

is the equivalent charge weight, Av denotes vent area, and Vf  is 
the volume of the confinement). The resulting actual gas 
pressure ig, considering multiple openings, is then extracted 
from the same graph for the sum of the fictitious scaled areas.  

This mentioned ig/Wg 
1/3 to Av/Vf 

2/3 graph should be 
obtained by interpolating UFC graphs (Anon. 2008) for 
parameters obtained as a weighed average of the parameters of 
individual openings. The weights wi should be calculated as 
follows: 

[� = 1
log10( $`,$

√b`3 ) .                                                               (11) 

The weighted average should be calculated on a log10 scale 
where possible (arguments are non-zero). This evaluation 
should be reasonably accurate for values of Av/Vf 

2/3 ≤ 1 and 

ρA.f /Wg
1/3

 ≤ 19 kg2/3/m2 (ρA.f  denotes the area density of the 
opening frangible cover), and should give conservative results. 

The summation of the effect of vent areas than can be 
graphically shown in the created graph. For the case study it is 
as follows (O1 is the larger glass covered opening, O2 is the 
smaller opening without cover, both from fig. 1): 

 

Figure 7: interpolated ig/Wg 
1/3 to Av/Vf 

2/3 graph 

2.4. Response to Pressures form Confined Explosions 

This section introduces a simplified calculation method for 
evaluating the response of a two-way simply supported 
reinforced concrete slab subjected to blast loading, where the 
Newmark generalised-alpha method (Erlicher et al. 2001) is 
applied for the dynamic calculation. However, this method has 
been extended for this application to take into account the non-
linear behaviour of reinforced concrete. The problem is solved 
as a system with a single degree of freedom. 

To apply the Newmark method, it was necessary to 
evaluate the relationship between the restoring force S and the 
deflection at the centre of the slab, u. This required an 
evaluation of the moment-curvature relationship. The 
procedure for calculating the limit state of serviceability from 
Eurocode 2-1 was used and extended to include the effects of 
concrete crushing and reinforcement exceeding its yield 
strength in tension. For simplicity the initial curvature of the 
wall in question was neglected, as well as the normal forces in 
the plane of the wall.  Given these conditions the curvature κ 
can be calculated from the bending moment M as follows 
(Anon. 2019): 

e = f[(1 − h)ij + hijj ],                                                 (12) 

where ζ is the distribution coefficient calculated for a case of 
pure bending according to the following equation: 

h = max (1 − l(nX�n )2; 0),                                                (13) 

where β = 1 for short-term loading and Mcr represents the 
bending moment which causes initial cracking. The parameter 

CI can be determined as CI = (EcIy,i)-1, where pq is the Young's 

modulus of the concrete and Iy,i is the moment of inertia of an 
ideal section. Iy,i can be determined with knowledge of the 
concrete compression block depth xc, which can be obtained 
from the equilibrium of the first moments of area on an ideal 
section. The value of the parameter CII is dependent on the 
nonlinearity of the materials (method works with bilinear 
stress-strain diagram of both steel and concrete). It can be 
evaluated using the following equation: 

ijj = r&+rsℎ	 ⋅ 1n,                           (14) 

where εt represents the strain at the top surface of the slab, εb 
at the bottom surface, and hs denotes the height of the slab 



 

(width of a wall). The behaviour of concrete is simplified by 
assuming that it acts in tension until the first crack is formed, 
after which the concrete in tension only affects the 
performance of the cross-section via distribution coefficient ζ. 

A programmed calculation was used to evaluate the 
moment-curvature relationship. For a given strain at the top 
surface εt,i, the program calculates the depths of the concrete 
compression block xc for all possible combinations of the 
behaviour of individual parts of the cross-section. These 
behaviours include whether the concrete acts in tension or not, 
whether it is plasticized or not, and whether the reinforcement 
is plasticized or not. The calculation of xc for each combination 
is derived from the equilibrium of forces on the cross-section. 
Then the conditions for the assumed behaviour in each 
combination are examined.  If met, the moment M of the forces 
on the cross-section is calculated, and Equations 12 to 14 are 
applied. The deformations in the reinforcement and at the 
bottom surface can be determined, with use of similar 
triangles, utilizing the values of xc and εt,i. This process is 
executed for εt,i ∈ (0; εc,1 >. 

The load-deflection relationship of a statically determined 
beam can be obtained by a simplified procedure. The beam is 
divided into finite sections with constant curvature defined by 
the derived κ to M(f) relationship and the value of M evaluated 
for the middle of the finite section. At the ends of the beam and 
at the boundaries between neighbouring sections, two 
unknown quantities can be defined - deflection u and rotation 
φ, some of which can be defined by boundary conditions. For 
segment i, the geometric relations link the unknown quantities 
on both sides, resulting in a series of equations that can be used 
to determine the unknowns. The beam's deformation at its 
centre u(M(f)) can then be evaluated easily. 

  Given that the restoring force per unit area of a beam, 
denoted as sb, is, in statics, equal to the loading force acting 
upon it, it can be stated that sb(u(f)) = f. The restoring force per 
unit area of a two-way slab, denoted as s, can be determined as 
the superposition of the area restoring forces of two unit-width 
strips oriented perpendicular to each other, resulting in 
s(u) = sb,x(u) + sb,y(u). It is worth noting that this approach 
does not account for the lifting of the corners of the slab. 

Lastly, the relationship between the condensed restoring 
force S and acting on the condensed mass representing the slab, 
and the deflection at the centre of the slab u can be derived as 

follows: S(u) = s(u)‧�, where � represents the area of the slab. 
For the dynamic calculation a modified Newmark G-α 

method was used (Erlicher et al. 2001). The damping of the 
system was neglected, and parameters of the calculation was 
set so the numerical dumping is equal to zero. The deformation 
in the centre of the wall in the end of the timestep was 
calculated as follows: 

1�+1 =
�[1−wxy ( {$&	&'(2+ {̇$&	&'(+{̈$2 )−:̈$]+(1−�8)(
$+1−~$+1)+�8(
$−~$)

� 1−wxy &	&'(2 ,      (15) 

where m is the condensed mass of the wall, F denotes the 
loading force, tstep is the length of the time-step, and α and β 
are parameters defined by the requirement for numerical 
damping (Jithender & Tagir 2021).  

The approach presented in this chapter can only be used 
until the maximal deflection u is reached, as the behaviour of 
the structure is not defined for a load removal. Additionally, if 
the ultimate load-bearing moment is exceeded, the subsequent 
deformation can no longer be described by this procedure.  

For the wall in question the computed moment-curvature 
relationship of a vertical 1 m wide strip is shown in fig. 8. The 
result of the Newmark G-α dynamic analysis is shown in fig. 
9. Based on the graphs, it can be concluded that the wall would 
likely remain intact after loading, but it would be severely 
damaged. The tension reinforcement in both directions will 
exceed its yield strain, and the compressed concrete will be 
crushed. 

 

Figure 8: Moment – curvature relationship 

 

Figure 9: Results of Newmark G-α dynamic analysis 

3. CONCLUSIONS 

Limitations of the blast load assessment methods described in 
NUREG/CR-0442 (for close-in explosions) and  
UFC 3-340-02 (for confined explosions) were identified. By 
extending these methods, it is possible to approximately 
evaluate the structural response of reinforced concrete 
structures that are subjected to close-in explosions and have 
supports located relatively close to the most heavily loaded 
section of the structure. Additionally, it is possible to evaluate 
structures subjected to confined explosions with fragile, 
frangible elements and multiple vent openings. 

The methods' extensions were applied to a complex case 
study. The study involved exposing a medium-sized room 
within a reinforced concrete structure to a 6.3 kg Octol 70/30 
explosive. According to the analysis, the load-bearing 
structures confining the room would be severely damaged and 
partially disintegrated by this explosive event. Additionally, 
the analysis of the blast wave reflection from the frangible 
element shows that its fragmentation has a negligible effect in 
this case. 



 

The theoretical framework presented in this thesis 
provides a foundation for future studies to build upon. The 
method for evaluating the reduction of reflected blast pressures 
from fragmented frangible elements could benefit from 
additional support or refinement through physical or numerical 
experiments. Furthermore, the calculation of the effect of 
multiple openings on the gas impulse has the potential for 
extension to consider heavier covers or larger openings. 
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